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The dental implant is an effective long-term procedure for oral edentulism due to its efficacy to support functional masticatory loading
forces. The implant prosthetic joint is considered a key factor for interface stability due to its biological and biomechanical implications.
The present investigation aimed to evaluate the fracture strength of 2 different implant prosthetic joints. This investigation tested 10
implants for each group: a conometric implant joint (group I) and internal hexagon implant (group II). The implant abutment joint was
coupled using a calibrated torquemeter. The samples were assessed using a loading fracture test and radiographically evaluated to observe
the interface changes and deformations. The means and standard deviations of the group I and group II maximum force (N) were 553 6 51
N and 432 6 43 N. The Young elastic modulus of group I and group II implants were 183.97 6 11.71 GPa and 143.72 6 15.93 GPa. The
conometric joint was reported to have a higher strength than the regular internal hexagon implant connection. The study findings could
have clinical implications for implant durability and peri-implant tissue stability in favor of the conical joint design.
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INTRODUCTION

T
he missing or decayed teeth replaced by a dental implant
device are considered helpful for partial or complete
edentulism rehabilitations.1 The long-term predictability
of implant-supported rehabilitation needs optimal

osseointegration and effective maintenance of healthy peri-
implant tissues.2,3

The dental implant procedure is certainly considered highly
predictable reporting a success rate of more than 90% due to
novel advances in implant microdesign and macrodesign, opti-
mized surgical protocols, and surface interventions.4

The role played by the implant prosthetic connection is
considered in the literature an essential factor for marginal hard
and soft tissue long-term stability and biomechanics.5,6 Several
aspects have been correlated with peri-implant marginal bone
resorption, including the implant–abutment interface design, the
contact angle and length, the prosthetic index design, and the
tolerances of the components, including the coupling screw
profiles. The macro and implant geometry report constant

improvements considering the mechanical and chemical proper-
ties able to increase the component’s stability, the wearing resis-
tance, and the material’s longevity.7,8 Various platform designs,
including internal and external implant prosthetic joints and cone-
morse (CM) connections,9–11 are available. Historically, the external
hexagon connection represents a standard design with a higher
tendency to produce component instability and micromovements
under functional horizontal load.10,12,13

Internal hexagons are joint designs characterized by differ-
ent subvariants that gain an advantage due to higher lateral
load stability and strength, implant fixture stress, and decreased
micromovements.11

The cone morse (CM) prosthetic joint is a special internal
connection characterized by increased implant stability, implant
chamber wall sealing contact between the implant–abutment
interfaces, and a decreased tendency to produce micromove-
ments under lateral forces.14,15

CM implants generally have an implant–abutment contact
angle inferior than 88, but the interface contact length dif-
fered between the implant systems and joint design.16

Some CM profiles are characterized by a prosthetic internal
index, which gives an antirotational geometry in the apical
component of the abutment.16

According to the recent literature,17 CM joints have been
purposed by the International Team for Implantology study
group18 reporting a decrease of marginal bone loss compared with
internal hexagon designs. Today, many manufacturers consider
different CM designs with different cone angles, whereas no
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differences in marginal bone loss have been detected comparing
different angle cutoff (less than 88 versus more than 88 angles).17

This behavior could be explained as the result of an increased
coupling stability of the conical connection, avoiding the trans-
versal forces and the lateral solicitations on the bone–implant
interface.9,19,20 In addition, the CM joint is characterized by the
frictional interaction between the abutment and the dental
implant’s internal chamber, significantly reducing the interface
microgaps and the bacterial colonization of this area.21

The in-bench dynamic loading tests have been purposed
in the literature to verify within a standardized environment a
simulation of a long-term effects and wearing of functional loading
on implant devices.22,23

The present investigation aimed to evaluate the fracture
strength and rigidity of 2 implant prosthetic joint designs through
a mechanical simulation.

MATERIALS AND METHODS

Dental implants tested

The test considered 2 different implant–joint geometries for the
present investigation. Group I considered an internal conometric
connection with an inclination of 2.58 per side (Close BL, ISOMED,
Albignasego PD, Italy) (Figure 1). The implant body was charac-
terized by a tapered geometry. The neck presented an inverted
taper without thread, which can preserve the cortical bone and
form a single body with prosthetic reconstruction. The group II
implant considered an internal hexagonal prosthetic joint and
tapered body geometry (TI c-BL, ISOMED) (Figure 2). The samples
were embedded in a resin block, and a loading angle of 308 6 28
was applied to conduct the fracture test. A radiograph was taken
before and after the test to observe the effects of the loading on
the implant–abutment joint coupling. The loading model, the
loading angle, and the testing assessments were performed con-
sidering the study design described by UNI: ISO14801
(Figure 3).24

Testing conditions

The fracture test was conducted in a controlled environment under
constant temperature and humidity (temperature: 228C 6 38C;
relative humidity: 65% 6 4%). The loading test was performed
using a single-axis ZT-HIGH (IMADA, Rome, Italy) for mechanical
tests with a load cell. The test is passed in the case of nonevident
structural defects and permanent deformations on the surface of
the hemispherical cap (Figure 4). The present investigation
considered the maximum peak, the initial distortion peak,
and the Young elastic modulus as study variables. At the end of
the experiments, a radiograph was taken to observe the effect of
the loading on the implant prosthetic interface.

FIGURE 1. Group I: internal conometric joint implant (Close BL, ISOMED
Albignasego PD Italy).

FIGURE 2. Group II: internal hexagonal joint implant (TI c-BL, ISOMED
Albignasego PD Italy).

FIGURE 3. Dental implant configuration in testing block. (1,7: load-
ing components, 2,3,5: abutment components, 2: bone level, 3: abut-
ment supporting parts, 4: cylinder, 6: dental implant in resin cylinder.
Line A-B: loading force cycles axis, line a-e: inclination of dental
implant with 308 6 28 axis).

FIGURE 4. Detail of the loading cell prepared for the mechanical test.
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Statistical analysis

The dedicated software package GraphPad 8 (Prism, San Diego,
CA) conducted and independently reviewed the statistical
analysis. Descriptive statistics consider the means and standard
deviations of the variables. The Mann-Whitney nonparametric
test was conducted to evaluate the parameters. The level of
significance was considered for a p-value , .05. The sample
size has been calculated through G*Power software (version
3.1.9.6, Franz Faul, University of Stuttgart) considering the following
parameters: effect size: 1.2; alfa error: 0.05 power 80%, and a group
allocation ratio 1/1. The computational model reported a minimum
sample size of 20 implants.

RESULTS

Loading test

The initial distortion for group I and group II implants was,
respectively, 4676 41 N and 412 6 28 N (Figures 5 through 9).
The maximum force peaks of group I and group II implants were,
respectively, 5536 51 N and 4326 43 N. A significant difference in
initial distortion and maximum force peaks was observed compar-
ing group I and group II implants (p, .05). The Young elastic mod-
ulus of conometric implants (group I) was 183.97 6 11.71 GPa,
whereas the internal hexagon joint (group II) was 143.72 6

15.93 GPa. A significantly higher Young elastic modulus of the
group I implant was observed comparing the internal hexagon

implants (HIs) (group II) (p , .05) (Figures 4 through 8 and
the Table).

DISCUSSION

Dental implant longevity and durability are considered critical
points in clinical practice. It is a result of the advances in geometry
design, biomaterial chemistry, surface properties, and protocol
optimization.25 The most common factors in dental implant failure
concern poor oral hygiene, bone quality, systemic and local medi-
cal status commissions, and biomechanical factors.26,27 Implant
joint mechanical failure represents one of the most common com-
plications in the clinical practice that is involved in numerous
sequelae in terms of biological and prosthetic consequences. The
complication severity could include the coupling screw and
abutment unscrewing/fracture.28 The implant joint mechanical
complications could be heterogeneous with a clinical incidence
of approximately 9%, including major and minor events.29

The fracture of the implant body is rare and clinically could be
determined by inadequate implant diameter/length, masticatory
and prosthetic overloading, impairments of the coupling
components, parafunction, and bruxism.28 The decrease in
resistance properties could be theoretically influenced by
fatigue wearing and corrosion in the oral cavity environment.
In addition, the fixture body design seems to contribute to the
implant abutment strength and the durability of the interface.30

Another hypothesis could include the titanium surface treatment
as a variable that could influence the long-term mechanical

FIGURE 5. Group I: detail of the sample after the fracture test.

FIGURE 6. Group I: radiograph evaluation of the conometric joint
implant tested. Left: Prior fracture strength test. Middle: after the
loading. Right: detail of the implant–joint connection after the test.

FIGURE 7. Group II: detail of the sample after the fracture test.

FIGURE 8. Group II: radiograph evaluation of the internal hexagon
joint implant tested. Left: Prior fracture strength test. Middle: after
the loading. Right: detail of the implant–joint connection after the test.

Dental Implant Fracture Loading Test
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response and the incidence of body fractures. The role of surface
treatments is to modify implant body texture improving osseoin-
tegration, mechanical strength and wearing resistance. Recently,
Tardelli et al considered the effect of surface treatments on zirco-
nia body implants.31 The authors reported decreased zirconia
implant fracture resistance with dry treatment, including polishing,
annealing, vapor deposition coating, laser treatment, and sand-
blasting/hydrofluoric acid etching.31 This association is poorly
investigated on titanium implant, and more studies are necessary
to comply with the requirements of Associação Brasileira de Nor-
mas Técnicas, American Society for Testing and Materials, and
International Organization for Standardization standards.

The limits of the present investigation certainly concern the
application of a single loading vector, which was considered to
avoid multiple torsional forces typical of a physiological masticatory
loading condition. In vivo, the long-term exposure of the dental
implant body in the oral cavity could change the behavior under
the dynamic effect of the oral environment, including the mouth
humidity, temperature, pH, bacterial factor, and masticatory load-
ing. These aspects could significantly affect the measurable impact
of the interface wearing and the structural resistance of the implant
prosthetic coupling. In addition, the implant fracture could be
induced by physiological loading in the presence of marginal
bone; prosthetic impairments, including nonpassive infrastruc-
ture adaptation; or titanium alloy defects.31 In other terms, the
proposed study model can reduce the confounding variables
connected with the inhomogeneity of the loading conditions
and vectors of the oral cavity. Also, microstructural defects in the

titanium alloy could significantly initiate the loading strength and
fracture incidence. The present investigation compared 2 different
implant–joint designs characterized by similar macrogeometry. The
conical implant group was characterized by an internal coupling
angle of 28 and an inverted tapered crestal module design. The
primary evidence confirmed by the study findings seems to
report an increased Young modulus of the conical implant sys-
tem of approximately 21.87%, an increase of the initial distortion
point of approximately 11.78% and a maximum force peak of
approximately 21.88% compared with the internal hexagon joint
implant. The implant system rigidity could be correlated to the
mechanical friction determined by the conical tapered pros-
thetic joint that plays a remarkable role in the connection inter-
face, reducing the interface microgaps and micromovements
under the function. In this way, the differences in internal cham-
ber volume between the 2 coupling designs could produce 2
different responses considering HI and CM implants. The higher
rigidity and compression strength of CM implants that emerged
from the test could produce a positive effect with biological and
biomechanical implications in the clinical practice. The crestal
module fracture is a clinical complication with severe conse-
quences, concluding with the failure of the implant interface.
Moreover, the solid interface generated by the CM coupling
seems to produce a reduction in terms of microgaps, unscrewing,
fracture, and uncoupling tendencies.9 The microgaps also affect the
peri-implant tissue balance, and bacteria microleakage.32 In the liter-
ature, a higher risk of microleakage is correlated with internal pros-
thetic joints compared with CM implants.33 This evidence confirms
that the conical joint implants can provide an efficient interface seal
that a recent meta-analysis associates with a lower risk of peri-
implant complications and marginal bone loss.34

CONCLUSIONS

Within the limits of the present investigation, the conical
implant prosthetic joint showed higher fracture resistance and
rigidity compared with the internal hexagon connection. The
abutment–joint stability could improve dental implant durability
under oral masticatory function.

FIGURE 9. Summary charts describing the initial distortion peak, maximum force to the fracture, and the elastic modulus of group I and
group II implants (p , .05).

TABLE

Summary of the descriptive statistics of the study parameters

Group I Group II

Initial distortion (N) 467 6 41 N 412 6 28 N
Maximum force (N) 553 6 51 N 432 6 43 N
Implant diameter 4 mm 4 mm
Implant length 10 mm 10 mm
Young elastic modulus (E) 183.97 6 11.71 GPa 143.72 6 15.93 GPa
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